Self-avoiding trails with nearest neighbour interactions on the square lattice

Andrea Bedini

MASCOS and Department of Mathematics and Statistics, The University of Melbourne

Inaugural ANZAMP Annual Meeting 2012, Lorne

arXiv:1210.7092
Work in collaboration with A. L. Owczarek and T. Prellberg
Outline

1. Lattice polymers
2. Collapsing polymers
3. Nearest-Neighbour Interacting Self-Avoiding Trails
4. Conclusions
Outline

1. Lattice polymers
2. Collapsing polymers
3. Nearest-Neighbour Interacting Self-Avoiding Trails
4. Conclusions
Consider a walk on a some regular lattice

\[\phi_n = \{x_0 \equiv 0, x_1, \ldots, x_n\} \]

where \(x_i \) and \(x_{i+1} \) are lattice neighbours.

- Require \(x_i \) to be all distinct (e.g. \(x_i \neq x_j \) if \(i \neq j \)).
Fundamental quantities

- We are interested in their number
 \[Z_n \approx \mu^n n^{\gamma-1}, \]

- and in their size (ad. es. end-to-end distance)
 \[R_n^2 = \langle |x_n|^2 \rangle \approx n^{2\nu} \]

- \(\gamma \) and \(\nu \) are universal exponent.

- These exponents can be understood as those of a magnetic system with \(O(N) \) symmetry in the limit \(N \to 0 \).

- Exact values can be obtained using Coulomb Gas arguments
 \[\nu = 3/4 \text{ and } \gamma = 43/32 \]

- “Dilute polymers” phase
Self-Avoiding Trail (SAT)

- A model for polymers with loops or polymers in thin layers.

\[\phi_n = \{ x_0 \equiv 0, x_1, \ldots, x_n \} \]

where we now require

\[x_i x_{i+1} \neq x_j x_{j+1} \text{ if } i \neq j \] (bond avoidance)

CG predicts crossings to be an irrelevant perturbation of the dilute universality class.

Indeed, there is numerical evidence that the SAT exponents are the same as SAW.
Outline

1. Lattice polymers
2. Collapsing polymers
3. Nearest-Neighbour Interacting Self-Avoiding Trails
4. Conclusions
We introduce an attractive self interaction (contacts m_c).

and define the partition function:

$$Z_n(\omega) = \sum_{\phi \in SAW_n} \omega^{m_c(\phi)}$$

Energy: $u_n = \langle m_c \rangle / n$, Specific heat: $c_n = (\langle m_c^2 \rangle - \langle m_c \rangle^2) / n$
Collapse transition

- As the interaction increases we reach a critical point.

 \[\theta\text{-point} \]

 dilute \[\omega_c \] dense \[\omega \]

- The collapse transition corresponds to a tri-critical point of the \(O(N \to 0) \) magnetic system.

- Finite-size quantities are expected to obey a scaling form

 \[c_n(\omega) \sim n^{\alpha \phi} C((\omega - \omega_c)n^\phi) \]

 where \(C(x) \) is a scaling function and \(0 < \phi \leq 1 \).

 - Exponents \(\alpha \) and \(\phi \) satisfy the tri-critical relation

 \[2 - \alpha = \frac{1}{\phi} \]
Exact θ-point exponents

- The presence of vacancies induce short-range interactions on SAWs.
- θ-point is obtained at the point where the vacancies percolate
- Full set of exponents can be obtained
 \[\phi = \frac{3}{7}, \quad \alpha = -\frac{1}{3} \quad \text{and} \quad \nu = \frac{4}{7}. \]
- Specific heat does not diverge (exponent $\alpha\phi = -\frac{1}{7}$)
- Third derivative does diverge (exponent $(\alpha + 1)\phi = \frac{2}{7}$)
Interacting Self-Avoiding Trails (ISAT)

- Introduce a same-site interaction on trails

Let m_t be the number of doubly visited sites, we define

$$Z_n^{ISAT}(\omega) = \sum_{\psi \in SAT_n} \omega^{m_t(\psi)}.$$

- Energy: $u_n = \langle m_t \rangle / n$, Specific heat: $c_n = (\langle m_t^2 \rangle - \langle m_t \rangle^2) / n$
ISAT Collapse

- As shown by Owczarek and Prellberg on the square lattice there is a collapse transition with estimated exponents
 \[\phi_{IT} = 0.84(3) \quad \text{and} \quad \alpha_{IT} = 0.81(3) \]

- Additionally, the scaling of end-to-end distance was found to be consistent with
 \[R_n^2 \sim n (\log n)^2 \]

Clearly different from the \(\theta \)-point

- No predictions for these exponents
- Phase diagram
ISAT collapsed state

If we consider that proportion p_n of sites which are not doubly occupied

$$p_n = \frac{n - 2\langle m_t \rangle}{n}.$$

it is found\(^1\) that in the low temperature region

$$p_n \sim n^{-1/2} \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.$$

\(^{1}\)AB, A.L. Owczarek, T. Prellberg, arXiv:1210.7196
We have seen two models of the polymer collapse.
- that implement the same ideas
 (excluded volume + short range attraction)
- whose collapse transitions lie in different universality classes.

There is no clear understanding of why this is the case.
We have seen two models of the polymer collapse.
 - that implement the same ideas
 (excluded volume + short range attraction)
 - whose collapse transitions lie in different universality classes.

There is no clear understanding of why this is the case.

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>self-avoiding walks</td>
<td>nearest-neighbours</td>
</tr>
<tr>
<td>vs</td>
<td>vs</td>
</tr>
<tr>
<td>self-avoiding trails</td>
<td>multiply visited sites</td>
</tr>
</tbody>
</table>
We have seen two models of the polymer collapse.

- that implement the same ideas (excluded volume + short range attraction)
- whose collapse transitions lie in different universality classes.

There is no clear understanding of why this is the case.

Geometry

- self-avoiding walks vs self-avoiding trails

Interaction

- nearest-neighbours vs multiply visited sites
Outline

1. Lattice polymers
2. Collapsing polymers
3. Nearest-Neighbour Interacting Self-Avoiding Trails
4. Conclusions
Definition

Let $m_c(\psi_n)$ be the number of contacts, we define

$$Z_n^{\text{NT}}(\omega) = \sum_{\psi_n \in \text{SAT}_n} \omega^{m_c(\psi_n)}.$$

Energy: $u_n = \langle m_c \rangle / n$, Specific heat: $c_n = (\langle m_c^2 \rangle - \langle m_c \rangle^2) / n$
Specific-heat behaviour

- Let c_n^p be specific-heat at peak at length n.
- We plotted the quantity
 \[
 \log_2 \left[\frac{c_n^p - c_{n/2}^p}{c_{n/2}^p - c_{n/4}^p} \right] \xrightarrow{n \to \infty} \alpha \phi
 \]
- We find
 \[
 \alpha_{NT} \phi_{NT} = -0.16(3),
 \]
 vs a $-1/7 \approx -0.14$ (θ-point) and $\approx +0.68$ (ISAT).
Third-derivative behaviour

- Let t_n^p be the peak of the third derivative.
- The quantity
 \[
 \log_2 \left\{ \frac{t_n^p}{t_n^{p/2}} \right\} \overset{n \to \infty}{\longrightarrow} (1 + \alpha) \phi
 \]
- We find
 \[
 (\alpha_{NT} + 1) \phi_{NT} = 0.23(5)
 \]
 vs a θ-point value of $2/7 \approx 0.28$
Radius scaling

Assuming ISAW crossover exponent $\phi = \frac{3}{7}$, we can determine precisely the critical point go to greater lengths.

$$\nu \simeq 0.575(5)$$

vs a θ-point value of

$$\nu = \frac{4}{7} \simeq 0.571..$$
Characterisation of the low-temperature region

Plot of the proportion of steps visiting the same site once, at different temperatures above and below the critical point.

The scale $n^{-1/2}$ chosen is the natural low temperature scale.

In all cases: $\lim_{n \to \infty} p_n > 0$.

In the graph, the proportion p_n is plotted against $n^{-1/2}$ for different values of ω. The graph shows that p_n increases as $n^{-1/2}$ decreases, indicating a higher proportion of steps visiting the same site at lower temperatures.
Outline

1 Lattice polymers

2 Collapsing polymers

3 Nearest-Neighbour Interacting Self-Avoiding Trails

4 Conclusions
Summary

- We simulated a model of self-avoiding trails with nearest-neighbour interaction.
- We presented evidence that its collapse transition is in the same universality class as the θ-point.
- The θ-point seems to be robust when allowing crossings.
- While crossings are expected to be relevant in the dense phase, the dense phase seems also unaffected.
- CG predictions might not hold in presence of crossings.
Summary

- We simulated a model of self-avoiding trails with nearest-neighbour interaction.
- We presented evidence that its collapse transition is in the same universality class as the θ-point.
- The θ-point seems to be robust when allowing crossings.
- While crossings are expected to be relevant in the dense phase, the dense phase seems also unaffected.
- CG predictions might not hold in presence of crossings.

Thanks.