Exact solution of two friendly walks above a sticky wall with single and double interactions

†Aleks Owczarek, ‡Andrew Rechnitzer, and ‡Thomas Wong

†MASCOS and Department of Mathematics and Statistics, The University of Melbourne
‡Department of Mathematics and Statistics, University of British Columbia

December, 2012

Lorne, 2012
Directed walks

- Exact solutions of single and multiple directed walks models
- Recurrence and functional equation
- Rational, algebraic or non Differentially-finite (D-finite) solutions
- Multiple walks: Bethe Ansatz & Lindström-Gessel-Viennot
- LGV Lemma: multiple walks = determinant of single walk
- LGV problems result in generating functions that are D-finite
Functional equation for an expanded generating function
- Uses an extra catalytic variable
- Answer is a ‘boundary’ value
- Fix catalytic variable → ‘bulk’ term disappears (Kernel method)
- Obstinate kernel method: multiple values of catalytic variable
- Solutions are not always D-finite
Polymer Adsorption

The physical motivation is the adsorption phase transition
- Second order phase transition with jump in specific heat
- Crossover exponent $\phi = 1/2$ for directed walks and SAW
- Order parameter is coverage of the surface by the polymer
Exact solution and analysis of single and multiple directed walk models exist

- Single Dyck path in a half space
- Energy $-\varepsilon_a$ for each time (number m_a) it visits the surface
- Boltzmann weight $a = \frac{\varepsilon_a}{k_B T}$
A complete solution exists and the generating function is algebraic

Consider the coverage

\[A = \lim_{n \to \infty} \frac{\langle m_a \rangle}{n} \]

There exists a phase transition at a temperature \(T_a \) given by \(a = 2 \):

- For \(T > T_a \) the walk moves away entropically and \(A = 0 \)
- For \(T < T_a \) the walk is adsorbed onto the surface and \(A > 0 \)
• Exact solution of two directed walks joined making a simple “vesicle”
• Vesicles with interactions for visits of the bottom walk to height 0 and height 1

Single second order transition — similar to the single walk adsorption transition
MORE MOTIVATION: SAW IN A SLIT

• A motivation is a Monte Carlo study of ring polymers in a slit
• Here Both sides of the polygon interact with the surfaces of the slit

(Our Model)

Directed vesicle where both walks can interact with a single surface

Exact solution of two friendly walks above a sticky wall with single and double interactions

Owczarek
Figure: Two directed walks with single and “double” visits to the surface.

- energy $-\varepsilon_a$ for visits of the bottom walk only (single visits) to the wall,
- energy $-\varepsilon_d$ when both walks visit a site on the wall (double visits)
Model

- number of *single visits* to the wall will be denoted m_a,
- number of *double visits* will be denoted m_d.

The partition function:

$$Z_n(a, d) = \sum_{\hat{\varphi} \ni |\hat{\varphi}|=n} e^{(m_a(\hat{\varphi}) \cdot \varepsilon_a + m_d(\hat{\varphi}) \cdot \varepsilon_d)/k_BT}$$

where $a = e^{\varepsilon_a/k_BT}$ and $d = e^{\varepsilon_d/k_BT}$.

The thermodynamic reduced free energy:

$$\kappa(a, d) = \lim_{n \to \infty} n^{-1} \log (Z_n(a, d)) .$$
To find the free energy we will instead solve for the generating function

\[G(a, d; z) = \sum_{n=0}^{\infty} Z_n(a, d)z^n. \]

The radius of convergence of the generating function \(z_c(a, d) \) is directly related to the free energy via

\[\kappa(a, d) = \log(z_c(a, d)^{-1}). \]

Two order parameters:

\[\mathcal{A}(a, d) = \lim_{n \to \infty} \frac{\langle m_a \rangle}{n} \quad \text{and} \quad \mathcal{D}(a, d) = \lim_{n \to \infty} \frac{\langle m_d \rangle}{n}, \]
FUNCTIONAL EQUATION

We consider walks φ in the larger set, where each walk can end at any possible height.

The expanded generating function

$$F(r, s; z) \equiv F(r, s) = \sum_{\varphi \in \Omega} z^{\lfloor \varphi \rfloor} r^{\lfloor \varphi \rfloor} s^{\lceil \varphi \rceil} / 2^{a_m(\varphi) - d_m(\varphi)},$$

where

- z is conjugate to the length $|\varphi|$ of the walk,
- r is conjugate to the distance $\lfloor \varphi \rfloor$ of the bottom walk from the wall and
- s is conjugate to half the distance $\lceil \varphi \rceil$ between the final vertices of the two walks.

G(a,d;z)= F(0,0)
Consider adding steps onto the ends of the two walks

This gives the following functional equation

\[
F(r, s) = 1 + z \left(r + \frac{1}{r} + \frac{s}{r} + \frac{r}{s} \right) \cdot F(r, s) \\
- z \left(\frac{1}{r} + \frac{s}{r} \right) \cdot [r^0]F(r, s) - z\frac{r}{s} \cdot [s^0]F(r, s) \\
+ z(a - 1)(1 + s) \cdot [r^1]F(r, s) + z(d - a) \cdot [r^1s^0]F(r, s).
\]

Figure: Adding steps to the walks when the walks are away from the wall.
The Kernel

Rewrite equation as “Bulk = Boundary”

\[
K(r, s) \cdot F(r, s) = \frac{1}{d} + \left(1 - \frac{1}{a} - \frac{zs}{r} - \frac{z}{r}\right) \cdot F(0, s) - \frac{zr}{s} \cdot F(r, 0) + \left(\frac{1}{a} - \frac{1}{d}\right) \cdot F(0, 0)
\]

where the kernel \(K \) is

\[
K(r, s) = \left[1 - z \left(r + \frac{1}{r} + \frac{s}{r} + \frac{r}{s}\right)\right].
\]

Recall, we want \(F(0, 0) \) so we try to find values that kill the kernel

Exact solution of two friendly walks above a sticky wall with single and double interactions

Owczarek
Symmetries of the Kernel

The kernel is symmetric under the following two transformations:

\[(r, s) \mapsto \left(r, \frac{r^2}{s} \right), \quad (r, s) \mapsto \left(\frac{s}{r}, s \right)\]

Transformations generate a family of 8 symmetries (‘group of the walk’)

\[(r, s), \left(r, \frac{r^2}{s} \right), \left(\frac{s}{r}, \frac{s}{r^2} \right), \left(\frac{r}{s}, \frac{1}{s} \right), \left(\frac{1}{r}, \frac{1}{s} \right), \left(\frac{1}{r}, \frac{s}{r^2} \right), \left(\frac{r}{s}, \frac{r^2}{s} \right), \text{ and } \left(\frac{s}{r}, s \right)\]

We make use of 4 of these which only involve positive powers of \(r\).

This gives us four equations.
Following Bousquet-Mélou when \(a = 1 \) we form the simple alternating sum

\[\text{Eqn1} - \text{Eqn 2} + \text{Eqn 3} - \text{Eqn 4}. \]

- When \(a \neq 1 \) one needs to generalise that approach
- Multiply by rational functions,

The form of the Left-hand side of the final equation being

\[
a^2 rK(r, s) \left(sF(r, s) - \frac{r^2}{s} F \left(r, \frac{r^2}{s} \right) + \frac{Lr^2}{s^2} F \left(\frac{r}{s}, \frac{r^2}{s} \right) - \frac{L}{s^2} F \left(\frac{r}{s}, \frac{1}{s} \right) \right)
\]

where

\[
L = \frac{zas - ars + rs + zar^2}{zas - ar + r + zar^2}.
\]
Extracting the solution $a = 1$

\[K(r, s) \cdot (\text{linear combination of } F) = \]
\[\frac{r(s - 1)(s^2 + s + 1 - r^2)}{s^2} \left(1 + (d - 1)F(0, 0) \right) \]
\[- zd(1 + s)sF(0, s) + \frac{zd(1 + s)}{s^2} F \left(0, \frac{1}{s} \right). \]

- The kernel has two roots
- choose the one which gives a positive term power series expansion in z
- with Laurent polynomial coefficients in s:

\[\hat{r}(s; z) \equiv \hat{r} = \frac{s \left(1 - \sqrt{1 - 4 \left(\frac{1+s}{s} \right)^2 z^2} \right) }{2(1 + s)z} = \sum_{n \geq 0} C_n \frac{(1 + s)^{2n+1} z^{2n+1}}{s^n}, \]

where $C_n = \frac{1}{n+1} \binom{2n}{n}$ is a Catalan number.
Make the substitution $r \mapsto \hat{r}$

rewrite to remove z: $z = (\hat{r} + 1/\hat{r} + \hat{r}/s + s/\hat{r})^{-1}$.

Setting $r \mapsto \hat{r}$ gives

$$0 = ds^4F(0, s) - dsF \left(0, \frac{1}{s}\right) - (s - 1)(s^2 + s + 1 - \hat{r}^2)(s + \hat{r}^2) (1 + (d - 1)F(0, 0))$$

Note coefficients of $F(0, s)$ and $F(0, 1/s)$ are independent of \hat{r}.

*Divide by equation by s — $F(0, 0)$ is a constant term in the variable s.**
Hence extracting the coefficient of s^1 gives

$$0 = -\left(1 + \sum_{n=0}^{\infty} \frac{12(2n + 1)}{(n + 2)^2(n + 3)} C_n^2 z^{2n+2}\right) \cdot (1 + (d - 1)F(0, 0)) - d \cdot F(0, 0).$$

Solving the above when $d = 1$ gives

$$G(1, 1; z) = 1 + \sum_{n=0}^{\infty} \frac{12(2n + 1)}{(n + 2)^2(n + 3)} C_n^2 z^{2n+2},$$

and hence for general d we have

$$F(0, 0) = G(1, d; z) = \frac{G(1, 1; z)}{d + (1 - d)G(1, 1; z)}.$$
$a = d$

Need to extract coefficients term by term in a to give

$$[a^k z^{2n}] F(0, 0) = \sum_{k' = 0}^{k} \frac{k'(k' + 1)(2 + 4n - k'n - 2k')}{(k' - 1 - n)(n + 1)^2(-2n + k')(n + 2)} \binom{2n - k'}{n} \binom{2n}{n}$$

$$= \frac{k(k + 1)(k + 2)}{(2n - k)(n + 1)^2(n + 2)} \binom{2n - k}{n} \binom{2n}{n}$$

which gives us

$$G(a, a) = \sum_{n \geq 0} z^{2n} \sum_{k=0}^{n} a^k \frac{k(k + 1)(k + 2)}{(n + 1)^2(n + 2)(2n - k)} \binom{2n}{n} \binom{2n - k}{n}.$$

Agrees with Brak et al. (1998) that used LGV

One can now consider $d \neq a$:

$$G(a, d; z) = \frac{aG(a, a; z)}{d + (a - d)G(a, a; z)}.$$
• Combinatorial structure the underlying the functional equation.
• Breaking up our configurations into pieces between double visits gives

\[G(a, d; z) = \frac{1}{1 - dP(a; z)} \]

where \(P(a; z) \) is the generating function of so-called primitive factors.
• Rearranging this expression gives

\[P(a; z) = \frac{G(a, d; z) - 1}{dG(a, d; z)} = \frac{G(a, a; z) - 1}{aG(a, a; z)}. \]

• This allows us to calculate \(P(a; z) \) from a known expression for \(G(a, a; z) \)
The phases determined by dominant singularity of the generating function

The singularities of $G(a, d; z)$ are

- those of $P(a; z)$ and
- the simple pole at $1 - dP(a; z) = 0$ and
- the singularities of $P(a; z)$ are related to those of $G(a, a; z)$.

There are two singularities of $G(a, a; z)$ giving rise to two phases:

- A desorbed phase: $A = D = 0$
- The bottom walk is adsorbed (an a-rich phase): $A > 0$ with $D = 0$

The simple pole in $1 - dP(a; z) = 0$ gives rise to the third phase

- Both walks are adsorbed and this is a d-rich phase: $D > 0$, and $A > 0$
Figure: The first-order transition is marked with a dashed line, while the two second-order transitions are marked with solid lines. The three boundaries meet at the point \((a, d) = (a^*, d^*) = (2, 11.55 \ldots)\).
Phase transitions

- The *Desorbed* to *a-rich* transition is
 - the standard second order adsorption transition
 - on the line $a = 2$ for $d < d^*$
- On the other hand the *Desorbed* to *d-rich* transition is *first order*
- While the *a-rich* to *d-rich* transition is also second order.

The other two phase boundaries are solutions to equations involving $G(a, a)$

The point where the three phase boundaries meet can be computed as

$$(a^*, d^*) = \left(2, \frac{16(8 - 3\pi)}{64 - 21\pi}\right)$$

Note that d^* is not algebraic.
Nature of the Solution

Desorbed to d-rich transition occurs at a value of $d_c(a)$ for $a < 2$. We found

$$d_c(1) = \frac{8(512 - 165\pi)}{4096 - 1305\pi}$$

which is not algebraic.

- If generating function was D-finite the $d_c(1)$ must be algebraic
- Hence generating function is not D-finite
- it is a calculated in terms of one.
Fixed energy ratio model family

Family of models parameterised by $-\infty < r < \infty$ where

\[\varepsilon_d = r\varepsilon_a \quad \text{and so} \quad d = a' \]

- $r = 2$ model has *two* phase transitions as temperature changed.
- At very low temperatures the model is in a d-rich phase.
- While at high temperatures the model is in the desorbed state.
- At intermediate temperatures the system is in an a-rich phase.
- Both transitions are second-order with jumps in specific heat.
Conclusions

- Vesicle above a surface — both sides of the vesicle can interact
- Exact solution of generating function
- Obstinate kernel method with a minor generalisation
- Solution is not D-finite — LGV lemma does not apply directly
- There are two low temperature phases
- Line of first order transition and usual second order adsorption.