Generalized Verma and Wakimoto Modules

Masoud Kamgarpour

The University of Queensland
School of Mathematics and Physics

ANZAMP Conference
2013
What is an affine Kac-Moody algebra?
What is an affine Kac-Moody algebra?
Central extensions of loop algebras.
What is an affine Kac-Moody algebra?

Central extensions of loop algebras.

Let \mathfrak{g} be a simple Lie algebra (e.g. $\mathfrak{g} = \mathfrak{sl}_2$).
What is an affine Kac-Moody algebra?

Central extensions of loop algebras.

Let \mathfrak{g} be a simple Lie algebra (e.g. $\mathfrak{g} = \mathfrak{sl}_2$).

Loop algebra:

$\mathfrak{g}((t)) := \mathfrak{g} \oplus \mathbb{C}((t))$,

$[x \otimes t^m, y \otimes t^n] := [x, y] \otimes t^{m+n}$.
What is an affine Kac-Moody algebra?

Central extensions of loop algebras.

Let \mathfrak{g} be a simple Lie algebra (e.g. $\mathfrak{g} = \mathfrak{sl}_2$).

Loop algebra:

$\mathfrak{g}((t)) := \mathfrak{g} \oplus \mathbb{C}((t))$, $[x \otimes t^m, y \otimes t^n] := [x, y] \otimes t^{m+n}$.

For every non-degenerate bilinear form $\kappa : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$, one can define an exact sequence

$$0 \to \mathbb{C}.1 \to \widehat{\mathfrak{g}}_\kappa \to \mathfrak{g}((t)) \to 0$$

with the two cocycle defined by

$$x \otimes f(t), y \otimes g(t) \mapsto -\kappa(x, y) \cdot \text{Res}_{t=0} f \, dg.$$
What is an affine Kac-Moody algebra?

Central extensions of loop algebras.

Let \mathfrak{g} be a simple Lie algebra (e.g. $\mathfrak{g} = \mathfrak{sl}_2$).

Loop algebra:
\[
\mathfrak{g}((t)) := \mathfrak{g} \oplus \mathbb{C}((t)), \quad [x \otimes t^m, y \otimes t^n] := [x, y] \otimes t^{m+n}.
\]

For every non-degenerate bilinear form $\kappa : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$, one can define an exact sequence
\[
0 \to \mathbb{C}.1 \to \hat{\mathfrak{g}}_\kappa \to \mathfrak{g}((t)) \to 0
\]
with the two cocycle defined by
\[
x \otimes f(t), y \otimes g(t) \mapsto -\kappa(x, y) \cdot \text{Res}_{t=0} f \, dg.
\]

$\hat{\mathfrak{g}}_\kappa$ is called an affine Kac-Moody algebra at level κ.

Masoud Kamgarpour

The University of Queensland

Generalized Verma and Wakimoto Modules
What is an affine Kac-Moody algebra?

Central extensions of loop algebras.

Let \mathfrak{g} be a simple Lie algebra (e.g. $\mathfrak{g} = \mathfrak{sl}_2$).

Loop algebra:
$\mathfrak{g}((t)) := \mathfrak{g} \oplus \mathbb{C}((t))$,
$[x \otimes t^m, y \otimes t^n] := [x, y] \otimes t^{m+n}$.

For every non-degenerate bilinear form $\kappa : \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$, one can define an exact sequence

$$0 \rightarrow \mathbb{C}.1 \rightarrow \hat{\mathfrak{g}}_\kappa \rightarrow \mathfrak{g}((t)) \rightarrow 0$$

with the two cocycle defined by

$$x \otimes f(t), y \otimes g(t) \mapsto -\kappa(x, y) \cdot \text{Res}_{t=0} f \, dg.$$

$\hat{\mathfrak{g}}_\kappa$ is called an affine Kac-Moody algebra at level κ.

The level $\kappa_{\text{crit}} = -\frac{1}{2} \kappa_{\text{Kil}}$ is the critical level.
What is a smooth representation?
What is a smooth representation?

Let $g[t] := g \otimes \mathbb{C}[t]$. Then $t^N g[t]$ is a subalgebra of \hat{g}^κ for all $N \geq 0$.

All modules in category O are smooth. However, the category of smooth modules is much bigger.
What is a smooth representation?
Let $g[t] := g \otimes \mathbb{C}[t]$. Then $t^N g[t]$ is a subalgebra of \hat{g}_κ for all $N \geq 0$.
A module V over \hat{g}_κ is smooth if for every $v \in V$, there exists an $N \geq 0$ such that $t^N g[t].v = 0$.
What is a smooth representation?

Let $g[t] := g \otimes \mathbb{C}[t]$. Then $t^N g[t]$ is a subalgebra of \hat{g}_κ for all $N \geq 0$.

A module V over \hat{g}_κ is smooth if for every $v \in V$, there exists an $N \geq 0$ such that $t^N g[t].v = 0$.

All modules in category \mathcal{O} are smooth.
What is a smooth representation?

Let $g[t] := g \otimes \mathbb{C}[t]$. Then $t^N g[t]$ is a subalgebra of \hat{g}_κ for all $N \geq 0$.

A module V over \hat{g}_κ is smooth if for every $v \in V$, there exists an $N \geq 0$ such that $t^N g[t].v = 0$.

All modules in category \mathcal{O} are smooth.

However, the category of smooth modules is much bigger.
What is a smooth representation?

Let $g[t] := g \otimes \mathbb{C}[t]$. Then $t^N g[t]$ is a subalgebra of \hat{g}_κ for all $N \geq 0$.

A module V over \hat{g}_κ is smooth if for every $v \in V$, there exists an $N \geq 0$ such that $t^N g[t].v = 0$.

All modules in category O are smooth.

However, the category of smooth modules is much bigger.

Plan: introduce two classes of smooth modules, which are not necessarily in category O.
What is a smooth representation?

Let $g[t] := g \otimes \mathbb{C}[t]$. Then $t^N g[t]$ is a subalgebra of \hat{g}_κ for all $N \geq 0$.

A module V over \hat{g}_κ is smooth if for every $v \in V$, there exists an $N \geq 0$ such that $t^N g[t].v = 0$.

All modules in category \mathcal{O} are smooth.

However, the category of smooth modules is much bigger.

Plan: introduce two classes of smooth modules, which are not necessarily in category \mathcal{O}.

Why do I care?

1. Kac-Moody algebras and groups have a characteristic p cousin. Smooth representations of the latter objects carry important number-theoretic information, elucidated by the Langlands conjecture.

2. Smooth representations of affine Kac-Moody algebras play a central role in the Beilinson and Drinfeld’s approach to the geometric Langlands program.
What is a smooth representation?

Let $\mathfrak{g}[t] := \mathfrak{g} \otimes \mathbb{C}[t]$. Then $t^N \mathfrak{g}[t]$ is a subalgebra of $\hat{\mathfrak{g}}_\kappa$ for all $N \geq 0$.

A module V over $\hat{\mathfrak{g}}_\kappa$ is smooth if for every $v \in V$, there exists an $N \geq 0$ such that $t^N \mathfrak{g}[t].v = 0$.

All modules in category \mathcal{O} are smooth.

However, the category of smooth modules is much bigger.

Plan: introduce two classes of smooth modules, which are not necessarily in category \mathcal{O}.

Why do I care?

1. Kac-Moody algebras and groups have a characteristic p cousin. Smooth representations of the latter objects carry important number-theoretic information, elucidated by the Langlands conjecture.
What is a smooth representation?

Let $g[[t]] := g \otimes \mathbb{C}[[t]]$. Then $t^N g[[t]]$ is a subalgebra of \widehat{g}_κ for all $N \geq 0$.

A module V over \widehat{g}_κ is smooth if for every $v \in V$, there exists an $N \geq 0$ such that $t^N g[[t]].v = 0$.

All modules in category \mathcal{O} are smooth.

However, the category of smooth modules is much bigger.

Plan: introduce two classes of smooth modules, which are not necessarily in category \mathcal{O}.

Why do I care?

1. Kac-Moody algebras and groups have a characteristic p cousin. Smooth representations of the latter objects carry important number-theoretic information, elucidated by the Langlands conjecture.

2. Smooth representations of affine Kac-Moody algebras play a central role in the Beilinson and Drinfeld’s approach to the geometric Langlands program.
\[\mathfrak{h} \text{ Cartan, } \mathfrak{b} \text{ Borel containing } \mathfrak{h} \]
\[\mathfrak{h} \text{ Cartan, } b \text{ Borel containing } \mathfrak{h} \]
\[\mathfrak{g}_n := \mathfrak{g} \otimes \mathbb{C}[t]/t^n, \quad b_n = b \otimes \mathbb{C}[t]/t^n, \quad \mathfrak{h}_n = \mathfrak{h} \otimes \mathbb{C}[t]/t^n. \]
- \mathfrak{h} Cartan, \mathfrak{b} Borel containing \mathfrak{h}
- $\mathfrak{g}_n := \mathfrak{g} \otimes \mathbb{C}[t]/t^n$, $\mathfrak{b}_n = \mathfrak{b} \otimes \mathbb{C}[t]/t^n$, $\mathfrak{h}_n = \mathfrak{h} \otimes \mathbb{C}[t]/t^n$.
- \mathfrak{b}_n the inverse image of \mathfrak{b}_n under the map $\mathfrak{g}[t] \to \mathfrak{g}_n$.

A character $\Lambda : \mathfrak{h}_n \to \mathbb{C}$ defines a character of $\hat{\mathfrak{b}}_n$ via the maps $\hat{\mathfrak{b}}_n \to \mathfrak{b}_n \to \mathfrak{h}_n \to \mathbb{C}$.

Generalised Verma module $M^\kappa(\Lambda) := \text{Ind}_{\hat{\mathfrak{g}}_{\kappa} \hat{\mathfrak{b}}_n}^{\hat{\mathfrak{g}}_{\kappa}} C^1(\Lambda)$.

1. What is the endomorphism algebra of $M^\kappa(\Lambda)$?
2. How does the centre (at the critical level) act on $M^\kappa(\Lambda)$?

To answer these questions, we relate Verma modules to Wakimoto modules.
\begin{itemize}
 \item \mathfrak{h} Cartan, \mathfrak{b} Borel containing \mathfrak{h}
 \item $g_n := g \otimes \mathbb{C}[t]/t^n$, $b_n = b \otimes \mathbb{C}[t]/t^n$, $h_n = h \otimes \mathbb{C}[t]/t^n$.
 \item \hat{b}_n the inverse image of b_n under the map $g[t] \to g_n$.
 \item A character $\Lambda : h_n \to \mathbb{C}$ defines a character of \hat{b}_n via the maps
 \[\hat{b}_n \to b_n \to h_n \xrightarrow{\Lambda} \mathbb{C}. \]
\end{itemize}
\(\mathfrak{h} \) Cartan, \(\mathfrak{b} \) Borel containing \(\mathfrak{h} \)

- \(\mathfrak{g}_n := \mathfrak{g} \otimes \mathbb{C}[t]/t^n \), \(\mathfrak{b}_n = \mathfrak{b} \otimes \mathbb{C}[t]/t^n \), \(\mathfrak{h}_n = \mathfrak{h} \otimes \mathbb{C}[t]/t^n \).
- \(\hat{\mathfrak{b}}_n \) the inverse image of \(\mathfrak{b}_n \) under the map \(\mathfrak{g}[t] \to \mathfrak{g}_n \).
- A character \(\Lambda : \mathfrak{h}_n \to \mathbb{C} \) defines a character of \(\hat{\mathfrak{b}}_n \) via the maps
 \[
 \hat{\mathfrak{b}}_n \to \mathfrak{b}_n \to \mathfrak{h}_n \xrightarrow{\Lambda} \mathbb{C}.
 \]

- Generalised Verma module
 \[
 \mathcal{M}_\kappa(\Lambda) := \text{Ind}^{\hat{\mathfrak{g}}_\kappa}_{\mathfrak{b}_n \oplus \mathbb{C} \cdot 1}(\Lambda).
 \]
- \mathfrak{h} Cartan, \mathfrak{b} Borel containing \mathfrak{h}
- $\mathfrak{g}_n := \mathfrak{g} \otimes \mathbb{C}[t]/t^n$, $\mathfrak{b}_n = \mathfrak{b} \otimes \mathbb{C}[t]/t^n$, $\mathfrak{h}_n = \mathfrak{h} \otimes \mathbb{C}[t]/t^n$.
- \mathfrak{b}_n the inverse image of \mathfrak{b}_n under the map $\mathfrak{g}[t] \to \mathfrak{g}_n$.
- A character $\Lambda : \mathfrak{h}_n \to \mathbb{C}$ defines a character of $\hat{\mathfrak{b}}_n$ via the maps

$$\hat{\mathfrak{b}}_n \to \mathfrak{b}_n \to \mathfrak{h}_n \xrightarrow{\Lambda} \mathbb{C}.$$

- Generalised Verma module

$$\mathcal{M}_\kappa(\Lambda) := \text{Ind}_{\hat{\mathfrak{g}}_\kappa}^{\hat{\mathfrak{g}}_\kappa}(\Lambda).$$

- $n = 1$: usual Verma
Smooth representation of affine Kac-Moody algebras

Generalized Verma Modules

Generalized Wakimoto Modules

- \mathfrak{h} Cartan, \mathfrak{b} Borel containing \mathfrak{h}
- $\hat{\mathfrak{g}}_n := \mathfrak{g} \otimes \mathbb{C}[t]/t^n$, $\hat{\mathfrak{b}}_n = \mathfrak{b} \otimes \mathbb{C}[t]/t^n$, $\hat{\mathfrak{h}}_n = \mathfrak{h} \otimes \mathbb{C}[t]/t^n$.
- $\hat{\mathfrak{b}}_n$ the inverse image of \mathfrak{b}_n under the map $\mathfrak{g}[t] \to \hat{\mathfrak{g}}_n$.
- A character $\Lambda : \mathfrak{h}_n \to \mathbb{C}$ defines a character of $\hat{\mathfrak{b}}_n$ via the maps
 \[\hat{\mathfrak{b}}_n \to \mathfrak{b}_n \to \mathfrak{h}_n \xrightarrow{\Lambda} \mathbb{C}. \]
- Generalised Verma module
 \[M_{\kappa}(\Lambda) := \text{Ind}^{\hat{\mathfrak{g}}_\kappa}_{\hat{\mathfrak{b}}_n \oplus \mathbb{C}.1}(\Lambda). \]
- $n = 1$: usual Verma
- $n > 1$, not in category \mathcal{O}, but smooth.
\(\mathfrak{h} \) Cartan, \(\mathfrak{b} \) Borel containing \(\mathfrak{h} \)

\[
\begin{align*}
g_n & := g \otimes \mathbb{C}[t]/t^n, \\
\mathfrak{b}_n & = b \otimes \mathbb{C}[t]/t^n, \\
\mathfrak{h}_n & = \mathfrak{h} \otimes \mathbb{C}[t]/t^n.
\end{align*}
\]

\(\mathfrak{b}_n \) the inverse image of \(\mathfrak{b}_n \) under the map \(g[t] \rightarrow g_n \).

A character \(\Lambda : \mathfrak{h}_n \rightarrow \mathbb{C} \) defines a character of \(\hat{\mathfrak{b}}_n \) via the maps

\[
\hat{\mathfrak{b}}_n \rightarrow \mathfrak{b}_n \rightarrow \mathfrak{h}_n \xrightarrow{\Lambda} \mathbb{C}.
\]

Generalised Verma module

\[
\mathcal{M}_\kappa(\Lambda) := \text{Ind}^{\hat{\mathfrak{g}}_\kappa}_{\hat{\mathfrak{b}}_n \oplus \mathbb{C}.1}(\Lambda).
\]

\(n = 1 \) : usual Verma

\(n > 1 \), not in category \(\mathcal{O} \), but smooth.

Basic questions:

- What is the endomorphism algebra of \(\mathcal{M}_\kappa(\Lambda) \)?
- How does the centre (at the critical level) act on \(\mathcal{M}_\kappa(\Lambda) \)?

To answer these questions, we relate Verma modules to Wakimoto modules.
\(\mathfrak{h} \) Cartan, \(\mathfrak{b} \) Borel containing \(\mathfrak{h} \)

\[\mathfrak{g}_n := \mathfrak{g} \otimes \mathbb{C}[t]/t^n, \quad \mathfrak{b}_n = \mathfrak{b} \otimes \mathbb{C}[t]/t^n, \quad \mathfrak{h}_n = \mathfrak{h} \otimes \mathbb{C}[t]/t^n. \]

\(\mathfrak{b}_n \) the inverse image of \(\mathfrak{b}_n \) under the map \(\mathfrak{g}[t] \to \mathfrak{g}_n \).

A character \(\Lambda : \mathfrak{h}_n \to \mathbb{C} \) defines a character of \(\hat{\mathfrak{b}}_n \) via the maps

\[\hat{\mathfrak{b}}_n \to \mathfrak{b}_n \to \mathfrak{h}_n \xrightarrow{\Lambda} \mathbb{C}. \]

Generalised Verma module

\[\mathbb{M}_\kappa(\Lambda) := \text{Ind}_{\hat{\mathfrak{b}}_n \oplus \mathbb{C}.1}^{\hat{\mathfrak{g}}_\kappa} (\Lambda). \]

\(n = 1 \) : usual Verma

\(n > 1 \), not in category \(\mathcal{O} \), but smooth.

Basic questions:

1. What is the endomorphism algebra of \(\mathbb{M}_\kappa(\Lambda) \)?
\[\mathfrak{h} \text{ Cartan, } \mathfrak{b} \text{ Borel containing } \mathfrak{h} \]

\[\mathfrak{g}_n := \mathfrak{g} \otimes \mathbb{C}[t]/t^n, \quad \mathfrak{b}_n = \mathfrak{b} \otimes \mathbb{C}[t]/t^n, \quad \mathfrak{h}_n = \mathfrak{h} \otimes \mathbb{C}[t]/t^n. \]

\[\mathfrak{b}_n \text{ the inverse image of } \mathfrak{b}_n \text{ under the map } \mathfrak{g}[t] \to \mathfrak{g}_n. \]

A character \(\Lambda : \mathfrak{h}_n \to \mathbb{C} \) defines a character of \(\hat{\mathfrak{b}}_n \) via the maps

\[\hat{\mathfrak{b}}_n \to \mathfrak{b}_n \to \mathfrak{h}_n \xrightarrow{\Lambda} \mathbb{C}. \]

Generalised Verma module

\[\mathbb{M}_\kappa(\Lambda) := \text{Ind}_{\hat{\mathfrak{g}}_n}^{\hat{\mathfrak{g}}_{\kappa}} (\Lambda). \]

\[n = 1 : \text{ usual Verma} \]

\[n > 1, \text{ not in category } \mathcal{O}, \text{ but smooth.} \]

Basic questions:

1. What is the endomorphism algebra of \(\mathbb{M}_\kappa(\Lambda) ? \)
2. How does the centre (at the critical level) act on \(\mathbb{M}_\kappa(\Lambda) ? \)
h Cartan, **b** Borel containing **h**

\[g_n := g \otimes \mathbb{C}[t]/t^n, \quad b_n = b \otimes \mathbb{C}[t]/t^n, \quad h_n = h \otimes \mathbb{C}[t]/t^n. \]

\(b_n \) the inverse image of \(b_n \) under the map \(g[t] \to g_n \).

A character \(\Lambda : h_n \to \mathbb{C} \) defines a character of \(\hat{b}_n \) via the maps

\[\hat{b}_n \to b_n \to h_n \xrightarrow{\Lambda} \mathbb{C}. \]

Generalised Verma module

\[\mathcal{M}_\kappa(\Lambda) := \text{Ind}_{b_n \oplus \mathbb{C}.1}^{\hat{g}_\kappa}(\Lambda). \]

\(n = 1 \): usual Verma

\(n > 1 \), not in category \(\mathcal{O} \), but smooth.

Basic questions:

1. What is the endomorphism algebra of \(\mathcal{M}_\kappa(\Lambda) \)?
2. How does the centre (at the critical level) act on \(\mathcal{M}_\kappa(\Lambda) \)?

To answer these questions, we relate Verma modules to Wakimoto modules.
For ease of notation, we consider $g = \mathfrak{sl}_2$.
For ease of notation, we consider $\mathfrak{g} = \mathfrak{sl}_2$.

The Weyl algebra \mathcal{A} is the associative algebra generated by a_n and a_n^*, $n \in \mathbb{Z}$, subject to

$$[a_n, a_m^*] = \delta_{n,-m}, \quad [a_n, a_m] = [a_n^*, a_m^*] = 0.$$
For ease of notation, we consider $g = \mathfrak{sl}_2$.

The Weyl algebra \mathcal{A} is the associative algebra generated by a_n and a^*_n, $n \in \mathbb{Z}$, subject to

$$[a_n, a^*_m] = \delta_{n,-m}, \quad [a_n, a_m] = [a^*_n, a^*_m] = 0.$$

κ restricts to a non-degenerate form $\mathfrak{h} \times \mathfrak{h} \rightarrow \mathbb{C}$. So we can define the algebra

$$0 \rightarrow \mathbb{C}.1 \rightarrow \hat{\mathfrak{h}}_\kappa \rightarrow \mathfrak{h}(t) \rightarrow 0.$$
For ease of notation, we consider $g = \mathfrak{sl}_2$.

The Weyl algebra \mathcal{A} is the associative algebra generated by a_n and a^*_n, $n \in \mathbb{Z}$, subject to

$$[a_n, a^*_m] = \delta_{n,-m}, \quad [a_n, a_m] = [a^*_n, a^*_m] = 0.$$

κ restricts to a non-degenerate form $\mathfrak{h} \times \mathfrak{h} \to \mathbb{C}$. So we can define the algebra

$$0 \to \mathbb{C} \cdot 1 \to \hat{\mathfrak{h}}_\kappa \to \mathfrak{h}((t)) \to 0.$$

Wakimoto-Feigin-Frenkel free field realisation:
For ease of notation, we consider $\mathfrak{g} = \mathfrak{sl}_2$.

The Weyl algebra \mathcal{A} is the associative algebra generated by a_n and a_n^*, $n \in \mathbb{Z}$, subject to

$$[a_n, a_m^*] = \delta_{n,-m}, \quad [a_n, a_m] = [a_n^*, a_m^*] = 0.$$

κ restricts to a non-degenerate form $\mathfrak{h} \times \mathfrak{h} \to \mathbb{C}$. So we can define the algebra

$$0 \to \mathbb{C}.1 \to \widehat{\mathfrak{h}}_\kappa \to \mathfrak{h}(t) \to 0.$$

Wakimoto-Feigin-Frenkel free field realisation:

Input: a module L over $\widehat{\mathfrak{h}}_\kappa$ and a module N over \mathcal{A}.
For ease of notation, we consider $\mathfrak{g} = \mathfrak{sl}_2$.

The Weyl algebra \mathcal{A} is the associative algebra generated by a_n and a_n^*, $n \in \mathbb{Z}$, subject to

$$[a_n, a_m^*] = \delta_{n,-m}, \quad [a_n, a_m] = [a_n^*, a_m^*] = 0.$$

κ restricts to a non-degenerate form $\mathfrak{h} \times \mathfrak{h} \to \mathbb{C}$. So we can define the algebra

$$0 \to \mathbb{C}.1 \to \hat{\mathfrak{h}}_{\kappa} \to \mathfrak{h}((t)) \to 0.$$

Wakimoto-Feigin-Frenkel free field realisation:

Input: a module L over $\hat{\mathfrak{h}}_{\kappa}$ and a module N over \mathcal{A}.

Output: an $\hat{\mathfrak{g}}_{\kappa+\kappa_{\text{crit}}}$ module structure on $L \otimes N$.
For ease of notation, we consider $\mathfrak{g} = \mathfrak{sl}_2$.

The Weyl algebra \mathcal{A} is the associative algebra generated by a_n and a_n^*, $n \in \mathbb{Z}$, subject to

$$[a_n, a_m^*] = \delta_{n,-m}, \quad [a_n, a_m] = [a_n^*, a_m^*] = 0.$$

κ restricts to a non-degenerate form $\mathfrak{h} \times \mathfrak{h} \to \mathbb{C}$. So we can define the algebra

$$0 \to \mathbb{C}.1 \to \hat{\mathfrak{h}}_\kappa \to \mathfrak{h}((t)) \to 0.$$

Wakimoto-Feigin-Frenkel free field realisation:

Input: a module L over $\hat{\mathfrak{h}}_\kappa$ and a module N over \mathcal{A}.

Output: an $\hat{\mathfrak{g}}_{\kappa + \kappa_{\text{crit}}}$ module structure on $L \otimes N$.

The critical shift is a "quantum correction" arising because of normal ordering of fields.
What to take for L and for N?
What to take for L and for N?

We have a character $\mathfrak{h}[t] \rightarrow \mathfrak{h}_n \rightarrow \mathbb{C}$.
What to take for L and for N?

We have a character $\mathfrak{h}[[t]] \to \mathfrak{h}_n \xrightarrow{\Lambda} \mathbb{C}$.

$L := \text{Ind}_{\mathfrak{h}[[t]] \oplus \mathbb{C}.1}^{\mathfrak{h}_n} (\Lambda)$.

N is generated by a vacuum vector $|0\rangle$ subject to $a_m |0\rangle = 0$, $m \geq n$ and $a^*_m |0\rangle = 0$, $m \geq 1 - n$.

These modules appear in Fridan-Martinec-Shankar's "Conformal invariance, supersymmetry, and string theory". In mathematics literature, it seems only the case $n = 0$ and $n = 1$ are considered.
What to take for L and for N?

We have a character $\mathfrak{h}[t] \rightarrow \mathfrak{h}_n \xrightarrow{\Lambda} \mathbb{C}$.

$L := \text{Ind}_{\mathfrak{h}[t] \oplus \mathbb{C}.1}(\Lambda)$.

N is generated by a vacuum vector $|0\rangle$ subject to

$$a_m . |0\rangle = 0, m \geq n$$
$$a_m^* . |0\rangle = 0, m \geq 1 - n.$$
What to take for L and for N?

We have a character $\hat{\mathfrak{h}}[t] \to \mathfrak{h}_n \overset{\Lambda}{\to} \mathbb{C}$.

$L := \text{Ind}_{\hat{\mathfrak{h}}[t] \oplus \mathbb{C}}^{\mathfrak{h}_n} (\Lambda)$.

N is generated by a vacuum vector $|0\rangle$ subject to

$$a_m . |0\rangle = 0, \quad m \geq n \quad \quad a_m^* . |0\rangle = 0, \quad m \geq 1 - n.$$

These modules appear in Fridan-Martinec-Shankar’s “Conformal invariance, supersymmetry, and string theory”.

In mathematics literature, it seems only the case $n = 0$ and $n = 1$ are considered.

Generalised Wakimoto module:

$W_{\kappa + \kappa_{\text{crit}}}^{(\Lambda)} := L \otimes N$.
What to take for L and for N?

We have a character $\mathfrak{h}[t] \to \mathfrak{h}_n \to \mathbb{C}$.

$L := \text{Ind}_{\mathfrak{h}[t] \oplus \mathbb{C} 1}(\Lambda)$.

N is generated by a vacuum vector $|0\rangle$ subject to

$$a_m . |0\rangle = 0, m \geq n \quad a^*_m . |0\rangle = 0, m \geq 1 - n.$$

These modules appear in Fridan-Martinec-Shankar’s “Conformal invariance, supersymmetry, and string theory”.

In mathematics literature, it seems only the case $n = 0$ and $n = 1$ are considered.
What to take for L and for N?

We have a character $\mathfrak{h}[t] \to \mathfrak{h}_n \xrightarrow{\Lambda} \mathbb{C}$.

$L := \text{Ind}_{\mathfrak{h}[t] \oplus \mathbb{C}}^{\widehat{\mathfrak{h}}_\kappa} (\Lambda)$.

N is generated by a vacuum vector $|0\rangle$ subject to

$$a_m . |0\rangle = 0, \quad m \geq n \quad \text{and} \quad a_m^* . |0\rangle = 0, \quad m \geq 1 - n.$$

These modules appear in Fridan-Martinec-Shankar’s “Conformal invariance, supersymmetry, and string theory”.

In mathematics literature, it seems only the case $n = 0$ and $n = 1$ are considered.

Generalised Wakimoto module: $\mathbb{W}_{\kappa + \kappa_{\text{crit}}} (\Lambda) := L \otimes N$
Relationship between generalised Verma and Wakimoto modules:
- Relationship between generalised Verma and Wakimoto modules:

- Proposition: For every Λ, there exists a nontrivial morphism $\mathcal{M}_\kappa(\Lambda) \rightarrow \mathcal{W}_\kappa(\Lambda)$.

Thank you!

Masoud Kamgarpour
The University of Queensland
Relationship between generalised Verma and Wakimoto modules:

- Proposition: For every Λ, there exists a nontrivial morphism $\mathcal{M}_\kappa(\Lambda) \to \mathcal{W}_\kappa(\Lambda)$.

- Theorem: The centre at the critical level acts by the same quotient on $\mathcal{M}_{\kappa_{\text{crit}}}(\Lambda)$ and $\mathcal{W}_{\kappa_{\text{crit}}}(\Lambda)$.

Evidence for the conjecture:

1. If $n = 1$, this is a theorem of Frenkel.
2. In characteristic p, this is a theorem of Bernstein, Bushnell, Kutzko, Roche, ...
- Relationship between generalised Verma and Wakimoto modules:

- Proposition: For every \(\Lambda \), there exists a nontrivial morphism \(M_\kappa (\Lambda) \rightarrow W_\kappa (\Lambda) \).

- Theorem: The centre at the critical level acts by the same quotient on \(M_{\kappa_{\text{crit}}} (\Lambda) \) and \(W_{\kappa_{\text{crit}}} (\Lambda) \).

- Conjecture: For “generic” values of \(\Lambda \), the morphism \(M_{\kappa_{\text{crit}}} (\Lambda) \rightarrow W_{\kappa_{\text{crit}}} (\Lambda) \) is an isomorphism.
- Relationship between generalised Verma and Wakimoto modules:
 - Proposition: For every Λ, there exists a nontrivial morphism $M_\kappa(\Lambda) \to W_\kappa(\Lambda)$.
 - Theorem: The centre at the critical level acts by the same quotient on $M_{\kappa_{\text{crit}}}(\Lambda)$ and $W_{\kappa_{\text{crit}}}(\Lambda)$.
 - Conjecture: For “generic” values of Λ, the morphism $M_{\kappa_{\text{crit}}}(\Lambda) \to W_{\kappa_{\text{crit}}}(\Lambda)$ is an isomorphism.
 - Evidence for the conjecture:
 1. If $n = 1$, this is a theorem of Frenkel.
 2. In characteristic p, this is a theorem of Bernstein, Bushnell, Kutzko, Roche,
- Relationship between generalised Verma and Wakimoto modules:
- Proposition: For every Λ, there exists a nontrivial morphism $\mathcal{M}_\kappa(\Lambda) \to \mathcal{W}_\kappa(\Lambda)$.
- Theorem: The centre at the critical level acts by the same quotient on $\mathcal{M}_{\kappa_{\text{crit}}}(\Lambda)$ and $\mathcal{W}_{\kappa_{\text{crit}}}(\Lambda)$.
- Conjecture: For "generic" values of Λ, the morphism $\mathcal{M}_{\kappa_{\text{crit}}}(\Lambda) \to \mathcal{W}_{\kappa_{\text{crit}}}(\Lambda)$ is an isomorphism.
- Evidence for the conjecture:
 1. If $n = 1$, this is a theorem of Frenkel.
- Relationship between generalised Verma and Wakimoto modules:

- Proposition: For every \(\Lambda \), there exists a nontrivial morphism
 \(M_\kappa(\Lambda) \rightarrow W_\kappa(\Lambda) \).

- Theorem: The centre at the critical level acts by the same quotient on
 \(M_\kappa_{\text{crit}}(\Lambda) \) and \(W_\kappa_{\text{crit}}(\Lambda) \).

- Conjecture: For “generic” values of \(\Lambda \), the morphism
 \(M_\kappa_{\text{crit}}(\Lambda) \rightarrow W_\kappa_{\text{crit}}(\Lambda) \) is an isomorphism.

- Evidence for the conjecture:
 1. If \(n = 1 \), this is a theorem of Frenkel.
 2. In characteristic \(p \), this is a theorem of Bernstein, Bushnell, Kutzko, Roche,
Relationship between generalised Verma and Wakimoto modules:

- Proposition: For every Λ, there exists a nontrivial morphism $\mathcal{M}_\kappa(\Lambda) \to \mathcal{W}_\kappa(\Lambda)$.

- Theorem: The centre at the critical level acts by the same quotient on $\mathcal{M}_{\kappa_{\text{crit}}}(\Lambda)$ and $\mathcal{W}_{\kappa_{\text{crit}}}(\Lambda)$.

- Conjecture: For "generic" values of Λ, the morphism $\mathcal{M}_{\kappa_{\text{crit}}}(\Lambda) \to \mathcal{W}_{\kappa_{\text{crit}}}(\Lambda)$ is an isomorphism.

- Evidence for the conjecture:
 1. If $n = 1$, this is a theorem of Frenkel.
 2. In characteristic p, this is a theorem of Bernstein, Bushnell, Kutzko, Roche,

Thank you!