Geometric structure of percolation clusters

Eric Zhou
School of Mathematical Sciences
Monash University

2013.11.27
ANZAMP 2013
Collaborators

- Tim Garoni (Monash University)
- Youjin Deng (USTC, China)
- Junfeng Wang (USTC, China)
- Xiao Xu (USTC, China)
Outline

Fractal structure of percolation clusters

Our results

Conclusion
Outline

Fractal structure of percolation clusters

Our results

Conclusion
Outline

Fractal structure of percolation clusters

Our results

Conclusion
Outline

Fractal structure of percolation clusters

Our results

Conclusion
Percolation

Bond percolation on $L \times L$ square lattice

Edges are independently occupied with probability p

Phase transition $p_c = 1/2$

$P_\infty \sim (p - p_c)^{\beta}$ for $p \to p_c^+$

Correlation length $\xi \sim |p - p_c|^{-\nu}$

$\beta = 5/36$, $\nu = 4/3$
Percolation

- Bond percolation on $L \times L$ square lattice
Percolation

- Bond percolation on $L \times L$ square lattice
Percolation

- Bond percolation on $L \times L$ square lattice
- Edges are independently occupied with probability p
Percolation

- Bond percolation on $L \times L$ square lattice
- Edges are independently occupied with probability p
Percolation

- Bond percolation on $L \times L$ square lattice
- Edges are independently occupied with probability p
- Phase transition
Percolation

- Bond percolation on $L \times L$ square lattice
- Edges are independently occupied with probability p
- Phase transition
- $p_c = 1/2$
Percolation

- Bond percolation on $L \times L$ square lattice
- Edges are independently occupied with probability p
- Phase transition
- $p_c = 1/2$
- P_∞ - origin belongs to infinite cluster
Percolation

- Bond percolation on $L \times L$ square lattice
- Edges are independently occupied with probability p
- Phase transition
- $p_c = 1/2$
- P_∞ - origin belongs to infinite cluster
- $P_\infty \sim (p - p_c)^\beta$ for $p \to p_c^+$
Percolation

- Bond percolation on $L \times L$ square lattice
- Edges are independently occupied with probability p
- Phase transition
- $p_c = 1/2$
- P_∞ - origin belongs to infinite cluster
- $P_\infty \sim (p - p_c)^\beta$ for $p \rightarrow p_c^+$
- Correlation length
 $\xi \sim |p - p_c|^{-\nu}$

\[\text{Fractal structure of percolation clusters} \quad \text{Our results} \quad \text{Conclusion} \]
Percolation

- Bond percolation on \(L \times L \) square lattice
- Edges are independently occupied with probability \(p \)
- Phase transition
- \(p_c = 1/2 \)
- \(P_\infty \)- origin belongs to infinite cluster
- \(P_\infty \sim (p - p_c)^\beta \) for \(p \to p_c^+ \)
- Correlation length
 \(\xi \sim |p - p_c|^{-\nu} \)
- \(\beta = 5/36, \nu = 4/3 \)
Fractal structure

- Mean size of the largest cluster \(\sim L^{d_F}, \quad d_F = \frac{91}{48} \)
- Backbone
 - Mean size of backbone \(\sim L^{d_B}, \quad d_B = 1.64336(10) \)
- Red bond
 - Mean number of red bonds \(\sim L^{d_R}, \quad d_R = \frac{3}{4} \)
Fractal structure

- Mean size of the largest cluster $\sim L^{d_F}$, $d_F = 91/48$
- Backbone
- Mean size of backbone $\sim L^{d_B}$, $d_B = 1.6436(10)$
- Red bond
- Mean number of red bonds $\sim L^{d_R}$, $d_R = 3/4$
Fractal structure

- Mean size of the largest cluster $\sim L^{d_F}$, $d_F = 91/48$
- Backbone
 - Mean size of backbone $\sim L^{d_B}$, $d_B = 1.643\,36(10)$
- Red bond
 - Mean number of red bonds $\sim L^{d_R}$, $d_R = 3/4$
Fractal structure of percolation clusters

Fractal structure

- Mean size of the largest cluster $\sim L^{d_F}, \quad d_F = 91/48$
- Backbone
 - Mean size of backbone $\sim L^{d_B}, \quad d_B = 1.643 \pm 0.006$
- Red bond
 - Mean number of red bonds $\sim L^{d_R}, \quad d_R = 3/4$
Fractal structure

- Mean size of the largest cluster $\sim L^{d_F}, d_F = 91/48$
- Backbone
 - Mean size of backbone $\sim L^{d_B}, d_B = 1.643 \pm 0.010$
- Red bond
 - Mean number of red bonds $\sim L^{d_R}, d_R = 3/4$
Fractal structure of percolation clusters

Our results

Fractal structure

- Mean size of the largest cluster $\sim L^{d_F}$, $d_F = 91/48$
- Backbone
 - Mean size of backbone $\sim L^{d_B}$, $d_B = 1.64336(10)$
- Red bond
 - Mean number of red bonds $\sim L^{d_R}$, $d_R = 3/4$
Fractal structure of percolation clusters

Our results

Fractal structure

- Mean size of the largest cluster \(\sim L^{d_F}, d_F = 91/48 \)
- Backbone
- Mean size of backbone \(\sim L^{d_B}, d_B = 1.643 \pm 0.001 \)
- Red bond
- Mean number of red bonds \(\sim L^{d_R}, d_R = 3/4 \)
Fractal structure

- Mean size of the largest cluster $\sim L^{d_F}, d_F = 91/48$
- Backbone
- Mean size of backbone $\sim L^{d_B}, d_B = 1.64336(10)$
- Red bond
- Mean number of red bonds $\sim L^{d_R}, d_R = 3/4$
Fractal structure

- Mean size of the largest cluster $\sim L^{d_F}$, $d_F = 91/48$
- Backbone
- Mean size of backbone $\sim L^{d_B}$, $d_B = 1.643 \pm 0.003$
- Red bond
- Mean number of red bonds $\sim L^{d_R}$, $d_R = 3/4$
Outline

Fractal structure of percolation clusters

Our results

Conclusion
Bonds partition

Partition all bonds into branches, junctions and non-bridges

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters
Bonds partition

Partition all bonds into branches, junctions and non-bridges

- **Branches**: bridges and deletion of which produces trees (green)
- **Junctions**: bridges but not branches (red)
- **Non-bridges**: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters
Bonds partition

Partition all bonds into branches, junctions and non-bridges

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

Branch density ρ_g

Junction density ρ_j

Non-bridge density ρ_n

Leaf-free clusters

Bridge-free clusters
Bonds partition

Partition all bonds into branches, junctions and non-bridges

- **Branches**: bridges and deletion of which produces trees (green)
- **Junctions**: bridges but not branches (red)
- **Non-bridges**: not bridges (black)

Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters
Bonds partition

Partition all bonds into branches, junctions and non-bridges

- **Branches**: bridges and deletion of which produces trees (green)
- **Junctions**: bridges but not branches (red)
- **Non-bridges**: not bridges (black)

- **Branch density** ρ_g
- **Junction density** ρ_j
- **Non-bridge density** ρ_n
- **Leaf-free clusters**
- **Bridge-free clusters**
Bonds partition

Partition all bonds into branches, junctions and non-bridges

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

Branch density ρ_g
Junction density ρ_j
Non-bridge density ρ_n
Leaf-free clusters
Bridge-free clusters
Bonds partition

Partition all bonds into branches, junctions and non-bridges

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters
Bonds partition

Partition all bonds into branches, junctions and non-bridges

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters
Bonds partition

Partition all bonds into branches, junctions and non-bridges

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters
Bonds partition

Partition all bonds into branches, junctions and non-bridges

- **Branches:** bridges and deletion of which produces trees (green)
- **Junctions:** bridges but not branches (red)
- **Non-bridges:** not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters
Bonds partition

Partition all bonds into branches, junctions and non-bridges

- Branches: bridges and deletion of which produces trees (green)
- Junctions: bridges but not branches (red)
- Non-bridges: not bridges (black)

- Branch density ρ_g
- Junction density ρ_j
- Non-bridge density ρ_n
- Leaf-free clusters
- Bridge-free clusters
Fractal structure of percolation clusters

Our results

Conclusion
Loop configuration

- Bond configuration → loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_H}$, with $d_H = 7/4$
- Accessible external perimeter $\sim L^{d_E}$, with $d_E = 4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density ρ_2
Loop configuration

- Bond configuration \rightarrow loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_H}$, with $d_H = 7/4$
- Accessible external perimeter $\sim L^{d_E}$, with $d_E = 4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density ρ_2
Loop configuration

- Bond configuration \rightarrow loop configuration
- Loops drawn on medial graph
 - Mean length of the largest loop $\sim L^{d_H}$, with $d_H = 7/4$
 - Accessible external perimeter $\sim L^{d_E}$, with $d_E = 4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density ρ_2
Loop configuration

- Bond configuration → loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_H}$, with $d_H = 7/4$
- Accessible external perimeter $\sim L^{d_E}$, with $d_E = 4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density ρ_2
Loop configuration

- Bond configuration \rightarrow loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_H}$, with $d_H = 7/4$
- Accessible external perimeter $\sim L^{d_E}$, with $d_E = 4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density ρ_2
Loop configuration

- Bond configuration → loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_H}$, with $d_H = 7/4$
- Accessible external perimeter $\sim L^{d_E}$, with $d_E = 4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density ρ_2
Loop configuration

- Bond configuration → loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_H}$, with $d_H = 7/4$
- Accessible external perimeter $\sim L^{d_E}$, with $d_E = 4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density ρ_2
Loop configuration

- Bond configuration → loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_H}$, with $d_H = 7/4$
- Accessible external perimeter $\sim L^{d_E}$, with $d_E = 4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density ρ_2

For trivial topology

- $\rho_1 = \rho_g + \rho_j$
- $\rho_2 = \rho_n$
Loop configuration

- Bond configuration → loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_H}$, with $d_H = 7/4$
- Accessible external perimeter $\sim L^{d_E}$, with $d_E = 4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density ρ_2

For trivial topology

- $\rho_1 = \rho_g + \rho_j$
- $\rho_2 = \rho_n$

For non-trivial topology
Loop configuration

- Bond configuration → loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_H}$, with $d_H = 7/4$
- Accessible external perimeter $\sim L^{d_E}$, with $d_E = 4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density ρ_2

For trivial topology

- $\rho_1 = \rho_g + \rho_j$
- $\rho_2 = \rho_n$

For non-trivial topology
Loop configuration

- Bond configuration → loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_H}$, with $d_H = 7/4$
- Accessible external perimeter $\sim L^{d_E}$, with $d_E = 4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density ρ_2

For trivial topology
- $\rho_1 = \rho_g + \rho_j$
- $\rho_2 = \rho_n$

For non-trivial topology
- pseudo-bridge
Loop configuration

- Bond configuration \rightarrow loop configuration
- Loops drawn on medial graph
- Mean length of the largest loop $\sim L^{d_H}$, with $d_H = 7/4$
- Accessible external perimeter $\sim L^{d_E}$, with $d_E = 4/3$
- Bonds bounded by the same loop, density ρ_1
- Bonds bounded by distinct loops, density ρ_2

For trivial topology

- $\rho_1 = \rho_g + \rho_j$
- $\rho_2 = \rho_n$

For non-trivial topology

- pseudo-bridge
- $\rho_1 > \rho_g + \rho_j$
- $\rho_2 < \rho_n$
Findings

- Denote the original graph and the dual graph as G and G^*
- $m = |E(G)| = |E(G^*)|
- Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops
Findings

Lemma: On the torus $\rho_1 = \rho_2 = 1/4$ at $p_c = 1/2$

- Denote the original graph and the dual graph as G and G^*
- $m = |E(G)| = |E(G^*)|$
- Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops
Findings

Lemma: On the torus $\rho_1 = \rho_2 = 1/4$ at $p_c = 1/2$

- Denote the original graph and the dual graph as G and G^*
- $m = |E(G)| = |E(G^*)|$
- Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops
Findings

Lemma: On the torus $\rho_1 = \rho_2 = 1/4$ at $p_c = 1/2$

- Denote the original graph and the dual graph as G and G^*
- $m = |E(G)| = |E(G^*)|$
- Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops
Findings

Lemma: On the torus $\rho_1 = \rho_2 = 1/4$ at $p_c = 1/2$

- Denote the original graph and the dual graph as G and G^*
- $m = |E(G)| = |E(G^*)|$
- Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$

Let $\ell_1(e)$ be the event that e is bounded by the same loop
Let $\ell_2(e)$ be the event that e is bounded by distinct loops
Findings

Lemma: On the torus $\rho_1 = \rho_2 = 1/4$ at $p_c = 1/2$

- Denote the original graph and the dual graph as G and G^*
- $m = |E(G)| = |E(G^*)|$
- Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops
Findings

Lemma: On the torus $\rho_1 = \rho_2 = 1/4$ at $p_c = 1/2$

- Denote the original graph and the dual graph as G and G^*
- $m = |E(G)| = |E(G^*)|$
- Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops
Findings

Lemma: On the torus $\rho_1 = \rho_2 = 1/4$ at $p_c = 1/2$

- Denote the original graph and the dual graph as G and G^*
- $m = |E(G)| = |E(G^*)|$
- Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops

Let $|A| = a$, $e \in A$, and $B^* = A^* \cup e^*$
Findings

Lemma: On the torus $\rho_1 = \rho_2 = 1/4$ at $p_c = 1/2$

- Denote the original graph and the dual graph as G and G^*
- $m = |E(G)| = |E(G^*)|$
- Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops

Let $|A| = a$, $e \in A$, and $B^* = A^* \cup e^*$

One-to-one correspondence between (A, e) and (B^*, e^*) such that

$$1_{\ell_1(e)}(A) = 1 \iff 1_{\ell_2(e^*)}(B^*) = 1.$$
Findings

Lemma: On the torus $\rho_1 = \rho_2 = \frac{1}{4}$ at $p_c = \frac{1}{2}$

- Denote the original graph and the dual graph as G and G^*
- $m = |E(G)| = |E(G^*)|$
- Let $A \subset E(G)$ and define $A^* \subset E(G^*)$ via $e^* \in A^*$ iff $e \notin A$
- Let $\ell_1(e)$ be the event that e is bounded by the same loop
- Let $\ell_2(e)$ be the event that e is bounded by distinct loops

Let $|A| = a$, $e \in A$, and $B^* = A^* \cup e^*$

One-to-one correspondence between (A, e) and (B^*, e^*) such that

$$1_{\ell_1(e)}(A) = 1 \iff 1_{\ell_2(e^*)}(B^*) = 1.$$
Findings

- This gives

\[\sum A \subseteq E \sum_{|A|=a} 1_{\ell_1}(e)(A) = \sum B^* \subseteq E^* \sum_{|B^*|=m+1-a} 1_{\ell_2}(e^*)(B^*) \]

- Summing over all \(a\) and dividing by \(\frac{1}{m2^m}\) implies \(\rho_1 = \rho_2\)

- Since \(\rho_1 + \rho_2 = 1/2\), we have \(\rho_1 = \rho_2 = 1/4\)
Findings

- This gives

\[
\sum_{A \subseteq E} \sum_{e \in A} 1_{\ell_1(e)}(A) = \sum_{B^* \subseteq E^*} \sum_{e^* \in B^*} 1_{\ell_2(e^*)}(B^*)
\]

- Summing over all \(a \) and dividing by \(\frac{1}{m^{2m}} \) implies \(\rho_1 = \rho_2 \)

- Since \(\rho_1 + \rho_2 = 1/2 \), we have \(\rho_1 = \rho_2 = 1/4 \)
Findings

- This gives

\[
\sum_{A \subseteq E} \sum_{e \in A} 1_{\ell_1}(e)(A) = \sum_{B^* \subseteq E^*} \sum_{e^* \in B^*} 1_{\ell_2}(e^*)(B^*)
\]

- Summing over all \(a \) and dividing by \(\frac{1}{m2^m} \) implies \(\rho_1 = \rho_2 \)

- Since \(\rho_1 + \rho_2 = 1/2 \), we have \(\rho_1 = \rho_2 = 1/4 \)
Findings

- On the torus, we expect:
 \[\rho_n \rightarrow \rho_2 = 1/4, \text{ as } L \rightarrow \infty. \]

- For finite L, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

- $\rho_{n,0} = 0.250000^{+1}_{-2}$

- $y_1 = -1.250^{+1}_{-0}$

- y_1 consistent with

 \[d_R - 2 = -5/4 \]

- Number of pseudobridges

 \[L^2(\rho_n - \rho_2) \sim L^{d_R} \]
Findings

Non-bridge density ρ_n

- On the torus, we expect:
 \[\rho_n \to \rho_2 = 1/4, \text{ as } L \to \infty. \]

- For finite L, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

- $\rho_{n,0} = 0.250\,000\,1(2)$
- $y_1 = -1.250(1)$
- y_1 consistent with $d_R - 2 = -5/4$
- Number of pseudobridges $L^2 (\rho_n - \rho_2) \sim L^{d_R}$
Findings

Non-bridge density ρ_n

- On the torus, we expect:

$$\rho_n \to \rho_2 = 1/4, \text{ as } L \to \infty.$$

- For finite L, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

- $\rho_{n,0} = 0.250\,000\,1(2)$
- $y_1 = -1.250(1)$
- y_1 consistent with $d_R - 2 = -5/4$
- **Number of pseudobridges**

$$L^2(\rho_n - \rho_2) \sim L^{d_R}$$
Findings

Non-bridge density ρ_n

- On the torus, we expect:
 \[\rho_n \to \rho_2 = \frac{1}{4}, \text{ as } L \to \infty. \]

- For finite L, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

 - $\rho_{n,0} = 0.250\,000\,1(2)$
 - $y_1 = -1.250(1)$
 - y_1 consistent with $d_R - 2 = -5/4$
 - Number of pseudobridges $L^2(\rho_n - \rho_2) \sim L^{d_R}$
Findings

Non-bridge density ρ_n

- On the torus, we expect:

$$\rho_n \rightarrow \rho_2 = 1/4, \text{ as } L \rightarrow \infty.$$

- For finite L, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

- $\rho_{n,0} = 0.250\,000\,1(2)$

- $y_1 = -1.250(1)$

- y_1 consistent with $d_R - 2 = -5/4$

- Number of pseudobridges $L^2(\rho_n - \rho_2) \sim L^{d_R}$
Findings

Non-bridge density ρ_n

- On the torus, we expect:
 $$\rho_n \to \rho_2 = \frac{1}{4}, \text{ as } L \to \infty.$$
- For finite L, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

- $\rho_{n,0} = 0.250\,000\,1(2)$
- $y_1 = -1.250(1)$
- y_1 consistent with $d_R - 2 = -5/4$
- Number of pseudobridges $L^2(\rho_n - \rho_2) \sim L^{d_R}$
Findings

Non-bridge density ρ_n

- On the torus, we expect:
 \[\rho_n \rightarrow \rho_2 = 1/4, \text{ as } L \rightarrow \infty. \]
- For finite L, $\rho_n = \rho_{n,0} + b_1 L^{-y_1}$.

- $\rho_{n,0} = 0.2500001(2)$
- $y_1 = -1.250(1)$
- y_1 consistent with $d_R - 2 = -5/4$
- Number of pseudobridges $L^2(\rho_n - \rho_2) \sim L^{d_R}$
Findings

Non-bridge density ρ_n

- On the torus, we expect:
 \[
 \rho_n \to \rho_2 = 1/4, \text{ as } L \to \infty.
 \]
- For finite L, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

- $\rho_{n,0} = 0.250\,000\,1(2)$
- $y_1 = -1.250(1)$
- y_1 consistent with $d_R - 2 = -5/4$
- Number of pseudobridges $L^2(\rho_n - \rho_2) \sim L^{d_R}$
Non-bridge density ρ_n

- On the torus, we expect:
 $$\rho_n \to \rho_2 = 1/4, \text{ as } L \to \infty.$$
- For finite L, $\rho_n = \rho_{n,0} + b_1 L^{y_1}$.

ρ_n vs. $L^{-5/4}$

- $\rho_{n,0} = 0.2500001(2)$
- $y_1 = -1.250(1)$
- y_1 consistent with $d_R - 2 = -5/4$
- Number of pseudobridges $L^2(\rho_n - \rho_2) \sim L^{d_R}$
Findings

▶ On the torus, we expect:

\[\rho_g + \rho_j \to \rho_1 = \frac{1}{4}, \text{ as } L \to \infty. \]

▶ For finite \(L \), \(\rho_g(\rho_j) = \rho_{g,0}(\rho_{j,0}) - b_1 L^{y_1}. \)

▶ \(\rho_{j,0} = 0.035\,949\,79(8) \)

▶ \(\rho_{g,0} = 0.214\,050\,18(5) \)

▶ \(y_1 = -1.250\,0(5) \)
Findings

Branch density ρ_g and junction density ρ_j

- On the torus, we expect:
 \[\rho_g + \rho_j \rightarrow \rho_1 = 1/4, \text{ as } L \rightarrow \infty. \]

- For finite L, $\rho_g(\rho_j) = \rho_{g,0}(\rho_{j,0}) - b_1 L^{y_1}$.

\[\begin{align*}
\rho_{j,0} &= 0.035 949 79(8) \\
\rho_{g,0} &= 0.214 050 18(5) \\
y_1 &= -1.250 0(5)
\end{align*} \]
Findings

Branch density ρ_g and junction density ρ_j

- On the torus, we expect:
 \[\rho_g + \rho_j \to \rho_1 = 1/4, \text{ as } L \to \infty. \]

- For finite L, \[\rho_g(\rho_j) = \rho_{g,0}(\rho_{j,0}) - b_1 L^{y_1}. \]

- $\rho_{j,0} = 0.035\,949\,79(8)$
- $\rho_{g,0} = 0.214\,050\,18(5)$
- $y_1 = -1.250\,0(5)$
Findings

Branch density ρ_g and junction density ρ_j

▶ On the torus, we expect:

$$\rho_g + \rho_j \to \rho_1 = 1/4, \text{ as } L \to \infty.$$

▶ For finite L, $\rho_g(\rho_j) = \rho_{g,0}(\rho_{j,0}) - b_1 L^{y_1}$.

▶ $\rho_{j,0} = 0.035\,949\,79(8)$

▶ $\rho_{g,0} = 0.214\,050\,18(5)$

▶ $y_1 = -1.25\,0\,0(5)$
Findings

Branch density ρ_g and junction density ρ_j

- On the torus, we expect:
 \[\rho_g + \rho_j \rightarrow \rho_1 = 1/4, \text{ as } L \rightarrow \infty. \]
- For finite L, $\rho_g(\rho_j) = \rho_{g,0}(\rho_j,0) - b_1 L y_1$.

\[\rho_{j,0} = 0.035\,949\,79(8) \]
\[\rho_{g,0} = 0.214\,050\,18(5) \]
\[y_1 = -1.250\,0(5) \]
Findings

Branch density ρ_g and junction density ρ_j

- On the torus, we expect:
 \[
 \rho_g + \rho_j \rightarrow \rho_1 = \frac{1}{4}, \text{ as } L \rightarrow \infty.
 \]
- For finite L, $\rho_g(\rho_j) = \rho_{g,0}(\rho_{j,0}) - b_1 L^{y_1}$.

- $\rho_{j,0} = 0.035\,949\,79(8)$
- $\rho_{g,0} = 0.214\,050\,18(5)$
- $y_1 = -1.250\,0(5)$
Findings

Branch density ρ_g and junction density ρ_j

- On the torus, we expect:

$$\rho_g + \rho_j \rightarrow \rho_1 = 1/4, \text{ as } L \rightarrow \infty.$$

- For finite L, $\rho_g(\rho_j) = \rho_{g,0}(\rho_{j,0}) - b_1 L^{y_1}$

- $\rho_{j,0} = 0.035\,949\,79(8)$
- $\rho_{g,0} = 0.214\,050\,18(5)$
- $y_1 = -1.250\,0(5)$
Findings

Branch density ρ_g and junction density ρ_j

- On the torus, we expect:
 \[\rho_g + \rho_j \to \rho_1 = \frac{1}{4}, \text{ as } L \to \infty. \]

- For finite L, $\rho_g(\rho_j) = \rho_{g,0}(\rho_{j,0}) - b_1 L^{y_1}$.

\[\begin{align*}
\rho_{g,0} &= 0.21405018(5) \\
\rho_{j,0} &= 0.03594979(8) \\
y_1 &= -1.2500(5)
\end{align*} \]
Findings

- For leaf-free clusters
 - fractal dimension for clusters is $d_F = 91/48$
 - fractal dimension for loops is $d_H = 7/4$

- For bridge-free clusters
 - fractal dimension for clusters is $d_B = 1.64336(10)$
 - fractal dimension for loops is $d_E = 4/3$
Findings

Fractal dimension

- For leaf-free clusters
 - fractal dimension for clusters is $d_F = 91/48$
 - fractal dimension for loops is $d_H = 7/4$

- For bridge-free clusters
 - fractal dimension for clusters is $d_B = 1.643 \, 36(10)$
 - fractal dimension for loops is $d_E = 4/3$
Findings

Fractal dimension

- For leaf-free clusters
 - fractal dimension for clusters is $d_F = 91/48$
 - fractal dimension for loops is $d_H = 7/4$

- For bridge-free clusters
 - fractal dimension for clusters is $d_B = 1.64336(10)$
 - fractal dimension for loops is $d_E = 4/3$
Findings

Fractal dimension

- For leaf-free clusters
 - fractal dimension for clusters is $d_F = 91/48$
 - fractal dimension for loops is $d_H = 7/4$

- For bridge-free clusters
 - fractal dimension for clusters is $d_B = 1.64336(10)$
 - fractal dimension for loops is $d_E = 4/3$
Findings

Fractal dimension

▶ For leaf-free clusters
 ▶ fractal dimension for clusters is $d_F = 91/48$
 ▶ fractal dimension for loops is $d_H = 7/4$

▶ For bridge-free clusters
 ▶ fractal dimension for clusters is $d_B = 1.64336(10)$
 ▶ fractal dimension for loops is $d_E = 4/3$
Findings

Fractal dimension

- For leaf-free clusters
 - fractal dimension for clusters is $d_F = \frac{91}{48}$
 - fractal dimension for loops is $d_H = \frac{7}{4}$

- For bridge-free clusters
 - fractal dimension for clusters is $d_B = 1.64336(10)$
 - fractal dimension for loops is $d_E = \frac{4}{3}$
Findings

Fractal dimension

- For leaf-free clusters
 - fractal dimension for clusters is $d_F = 91/48$
 - fractal dimension for loops is $d_H = 7/4$

- For bridge-free clusters
 - fractal dimension for clusters is $d_B = 1.643 \, 36(10)$
 - fractal dimension for loops is $d_E = 4/3$
Findings

Fractal dimension

- For leaf-free clusters
 - fractal dimension for clusters is $d_F = 91/48$
 - fractal dimension for loops is $d_H = 7/4$

- For bridge-free clusters
 - fractal dimension for clusters is $d_B = 1.643 \, 36(10)$
 - fractal dimension for loops is $d_E = 4/3$
Findings

Fractal dimension

- For leaf-free clusters
 - fractal dimension for clusters is $d_F = 91/48$
 - fractal dimension for loops is $d_H = 7/4$

- For bridge-free clusters
 - fractal dimension for clusters is $d_B = 1.643 \pm 0.036$
 - fractal dimension for loops is $d_E = 4/3$
Outline

Fractal structure of percolation clusters

Our results

Conclusion
Conclusion

- Partition bonds into branches, junctions and non-bridges
- $\rho_1 = \rho_2$
- Number of pseudo-bridges scales as L^{d_R}
- Leaf-free clusters
- Bridge-free clusters
Conclusion

- Partition bonds into branches, junctions and non-bridges
- $\rho_1 = \rho_2$
- Number of pseudo-bridges scales as L^{d_R}
- Leaf-free clusters
- Bridge-free clusters
Conclusion

- Partition bonds into branches, junctions and non-bridges
- $\rho_1 = \rho_2$
- Number of pseudo-bridges scales as L^{d_R}
- Leaf-free clusters
- Bridge-free clusters
Conclusion

- Partition bonds into branches, junctions and non-bridges
- \(\rho_1 = \rho_2 \)
- Number of pseudo-bridges scales as \(L^{d_R} \)
- Leaf-free clusters
- Bridge-free clusters
Conclusion

- Partition bonds into branches, junctions and non-bridges
- $\rho_1 = \rho_2$
- Number of pseudo-bridges scales as L^{d_R}
- Leaf-free clusters
- Bridge-free clusters
Conclusion

- Partition bonds into branches, junctions and non-bridges
- $\rho_1 = \rho_2$
- Number of pseudo-bridges scales as L^{d_R}
- Leaf-free clusters
- Bridge-free clusters
Conclusion

- Partition bonds into branches, junctions and non-bridges
- $\rho_1 = \rho_2$
- Number of pseudo-bridges scales as L^{d_R}
- Leaf-free clusters
- Bridge-free clusters
Conclusion

- Partition bonds into branches, junctions and non-bridges
- \(\rho_1 = \rho_2 \)
- Number of pseudo-bridges scales as \(L^{d_R} \)
- Leaf-free clusters
- Bridge-free clusters

What happens for the general Fortuin-Kasteleyn random-cluster model?
Many thanks for your attention!
Many thanks for your attention!